Locality Analysis Through IBM POWER8 Hardware Sampling

Chencheng Ye yechencheng@gmail.com

Ning Gu ngu3@cs.rochester.edu Zhizhou Zhang zzhang72@u.rochester.edu

> Chen Ding cding@cs.rochester.edu

1

Full Trace vs. Sampled Trace

- Modern processors like IBM POWER 8 could sample the cache miss on the fly
- The overhead of sampling is low compared to collecting a full trace

Pro-	Ratio of full exe. time						
grams	1/1	1/10	1/100	1/1K	1/5K	1/10K	1/15K
BT	1.190	1.173	1.140	1.093	1.032	1.012	1.004
CG	1.168	1.193	1.176	1.151	1.151	1.108	1.009
FT	1.204	1.200	1.178	1.110	1.095	1.104	1.080
IS	1.111	1.086	1.042	1.035	1.033	1.040	1.053
LU	1.200	1.212	1.190	1.115	1.065	1.039	1.029
MG	1.205	1.204	1.125	1.098	1.051	1.050	1.053
SP	1.190	1.170	1.118	1.073	1.038	1.027	1.016
UA	1.208	1.172	1.091	1.048	1.025	1.018	1.015

Reuse Distance vs. Footprint

- Conventionally, people use reuse distance to analyze locality. A reuse involved two accesses, all accesses between them would be monitored
- Footprint is a higher order metric could be calculated in linear-time, amendable to sampling

Sampling Methods

- Reuse-based sampling is effective but costly to implement
- Miss-based sampling can be done with a negligible cost at run time. However, the downside is the loss of the ability to sample data reuse

Motivation

footprint + miss-based sampling reuse distance + miss-based sampling

footprint + full trace reuse distance + full trace

overhead

Ultimate Goal and Current work

- Predicting footprint, miss ratio curve, data size of full trace/high sampling ratio sampled trace, based on low sampling ratio sampled trace
- Data size prediction is the first step

Data Size Prediction

- Data size of a trace is defined as the number of distinct data blocks referenced in the trace. The data size is important since it defines the memory space needed
- One effect of sampling is that there is a chance for a data block not to be sampled. Therefore, the data size of a sampled trace is likely less than the data size of the full execution

Footprint and Data Size

Data Size Prediction

• Down-scaling

 Given a full trace, calculate data size of sampled trace based on the sampling ratio

• Up-scaling

• Solve the reverse issue

Down-scaling

• The Probability of a data block sampled at least once:

$$P(r, f) = 1 - (1 - \frac{1}{r})^{f}$$

- *r*: sampling frequency
- *f*: The number of times referenced in the execution
- The expect data size of sampled trace for a block:

$$P(r,f) \times C(f)$$

• C(f): the number of data blocks referred exact *f* times

Down-scaling

• The total data size of a sampled trace:

$$D(r) = \sum_{f=1}^{n} P(r, f) \times C(f)$$

Up-scaling

• We approximate the various values *P*(*r*,*f*) with a constant value *P*(*r*,*f*)

$$D(r) = \sum_{f=1}^{n} P(r, \overline{f}) \times C(f) = P(r, \overline{f}) \times \sum_{f=1}^{n} C(f)$$

There is not enough information to find best *f*, and we requires two different sampling ratios

$$\frac{D(r_0)}{D(r_1)} = \frac{P(r_0, \bar{f})}{P(r_1, \bar{f})}$$

Up-scaling

 We exhaustively check all possible values and take the best one according to measured value. we iterate from 0.01 to 10000 at step 0.01

Sample Loss

Using *perf* collects samples

- Why sample loss?
 - The buffer would be overwritten while it is full
 - All cores are busy
 - Available bandwidth between the memory and the disk is low
 - etc.

Requested & Actual Sampling Ratio

	Requested sampling ratio (10^{-5})						
Programs	100,000	10,000	1,000	100	20	10	6.7
	(1/1)	(1/10)	(1/100)	(1/1K)	(1/5K)	(1/10K)	(1/15K)
	Actual sampling ratio (10^{-5})						
BT	104.7	104.7	86.3	51.1	21.1	10.5	6.9
CG	128.4	120.0	60.4	54.3	20.1	10.0	6.7
FT	31.8	33.3	26.6	17.7	11.0	10.2	6.8
IS	361.4	318.3	105.2	35.4	19.1	10.0	6.7
LU	78.0	76.1	58.4	38.4	20.2	10.0	6.6
MG	301.6	310.6	149.1	87.3	20.6	10.1	6.7
SP	119.7	118.4	78.7	44.3	19.4	10.0	6.6
UA	403.6	332.2	145.4	72.9	19.7	10.0	6.7

Sampled Data Size on Power8

	BT		1/5K	1/10k	1/1	5K
	Data	Size	1.30	1.16		1
Pro-	Full Exect Samp	ling Ratio 3		1.5	1.5	
grams	Data Size(MB)	1/5K	1/10K	1/15	5K	
BT	172.06	0.519	0.422	0.36	53	
CG	184.13	0.521	0.314	0.24	3	
FT	1283.06	0.078	0.067	0.04	4	
IS	264.17 CG	1 1	1/5K	1/10k	1/1	5K
LU	147.60 Data	Size	2.14	1.29		1
MG	431.87 Samp	ling Ratio	3	1.5		1
SP	181.35	0.319	0.231	0.15	53	
UA	121.94	0.359	0.327	0.20)1	

Data Size Variation

- Taking the maximum and the minimal as boundary, the ratio is NOT greater than 1.1 as stable
- A program is stable if it is stable under all three sampling ratios
- The stability is not monotonic to the sampling ratio due to BT, MG and UA are not stable only at the median sampling ratio

Drogram	Sampling	Ratio of full exe.				
Flogram	Ratio	Min.	Median	Max.		
	1/1K	0.687	0.701	0.746		
BT	1/5K	0.502	0.518	0.553		
	1/15K	0.357	0.364	0.367		
	1/1K	0.740	0.751	0.799		
CG	1/5K	0.512	0.522	0.539		
	1/15K	0.241	0.243	0.245		
	1/1K	0.096	0.099	0.100		
FT	1/5K	0.073	0.074	0.075		
	1/15K	0.043	0.045	0.047		
	1/1K	0.033	0.035	0.050		
IS	1/5K	0.019	0.021	0.024		
	1/15K	0.005	io of full e Median 0.701 0.518 0.364 0.751 0.522 0.243 0.099 0.074 0.045 0.035 0.021 0.006 0.796 0.796 0.351 0.322 0.117 0.038 0.322 0.117 0.038 0.013 0.600 0.322 0.153 0.539 0.362 0.362 0.362	0.007		
	1/1K	0.759	0.796	0.835		
LU	1/5K	0.529	0.551	0.604		
	1/15K	0.297	tio of full e Median 0.701 0.518 0.364 0.751 0.522 0.243 0.099 0.074 0.045 0.035 0.021 0.006 0.796 0.796 0.322 0.117 0.038 0.322 0.117 0.038 0.322 0.153 0.539 0.362 0.362 0.362 0.204	0.341		
	1/1K	0.113	0.117	0.121		
MG	1/5K	0.034	0.038	0.038		
	1/15K	0.012	0.013	0.013		
	1/1K	0.567	0.600	0.658		
SP	1/5K	0.296	0.322	0.341		
	1/15K	0.149	0.796 0.551 0.322 0.117 0.038 0.013 0.600 0.322 0.153 0.539	0.159		
	1/1K	0.534	0.539	0.546		
UA	1/5K	0.332	0.362	0.376		
	1/15K	0.202	0.204	0.209		

Down-scaling Prediction

- CG at 1/1K has largest error: 26.9%
- Highest error of the rest is 3.66%, the average error is 0.71%

Up-scaling Prediction

- $\frac{Prediction}{Measurement} 1$
- IS is not shown
 since it has limited
 data blocks
- Prediction error: 3 of them within 10%. 1 of them within 20%.

Thank you for listening

Any questions?